

Published on Web 06/17/2010

Rhodium-Catalyzed Arylzincation of Terminal Allenes Providing Allylzinc Reagents and Its Application to Versatile Three-component Coupling Reaction

Yuji Yoshida,[†] Kei Murakami,[†] Hideki Yorimitsu,^{*,‡} and Koichiro Oshima^{*,†}

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan and Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Received March 18, 2010; E-mail: yori@kuchem.kyoto-u.ac.jp; oshima@orgrxn.mbox.media.kyoto-u.ac.jp

Multicomponent reactions of allenes have been attracting increasing attention owing to their inherent efficiency.¹ Among them, transition-metal-catalyzed three-component couplings involving allenes, organometallics, and carbonyls provide diversity-oriented synthesis of useful homoallylic alcohols.^{2–4} In most cases, the couplings consist of (1) transmetalation from an organometallic reagent to a transition metal, (2) carbometalation of allene, and (3) nucleophilic attack of the resulting allylic transition metal to carbonyl. However, the couplings still remain unsatisfactory despite its importance: the electrophiles are limited to aldehydes and imines because of the low reactivity of the allylic transition metal intermediates.

Here we report rhodium-catalyzed arylzincation⁵ of terminal allenes (Scheme 1).^{6–9} The reaction represents a rare example of carbometalation of allenes accompanying accumulation of allylic metals in a reaction flask. The key is smooth transmetalation between allylrhodium **B** and arylzinc species. The resulting allylzinc reagents **C** are reactive enough to allylate a wider variety of electrophiles, realizing a more versatile three-component coupling reaction.

Scheme 1. Proposed Mechanism for Arylzincation of Allenes

Treatment of 1,2-tridecadiene (1a) with a phenylzinc iodide \cdot LiCl complex in THF¹⁰ in the presence of [RhCl(cod)]₂ and P'Bu₃ at room temperature for 3 h gave the corresponding arylated product **3a** in high yields (Table 1, entries 1 and 2). The reaction with 4-bromophenylzinc reagent **2b** also proceeded smoothly, leaving the bromo group untouched (entry 3). Arylzinc reagents bearing an electron-withdrawing or an electron-donating group were also applicable (entries 4 and 5). However, bulky 2-methylphenylzinc reagents **2e** failed to react (entry 6). Phenylzincation of allene **1b**-**1d** proceeded smoothly without loss of the siloxy, tosylamide, and additional olefinic moieties (entries 7–9). The reaction of 1-phenyl-1,2-propadiene (**1e**) afforded the phenylated product **3i** in 84% yield (entry 10).

When acetonitrile was added to the allylzinc reagent C (1.7 equiv) derived from 1a and 2a, the corresponding ketone 4a was obtained in 62% yield. Instead, a Barbier-type reaction by mixing 1a, 2a, and acetonitrile together under the rhodium catalysis

Table 1. Scope of Allenes and Arylzinc Reagents^a

R ^{-C} ≈C 1	[RhCl(cod)] ₂ (2.5 ⁽ CH ₂ P ^t Bu ₃ (10 mol %	5 mol %) H) R Ar	+ R Ar
ArZnl•Li 2	iCI THF, r.t., 3 h then H⁺	3	3' H)
Entry	1, R	2 , Ar	3, Yield (%) ^b
1	1a, C ₁₀ H ₂₁	2a , Ph	3a , 80
2	1a , $C_{10}H_{21}$	2a , Ph	3a , 84 ^c
3	$1a, C_{10}H_{21}$	2b , 4 -BrC ₆ H ₄	3b , 77
4	$1a, C_{10}H_{21}$	2c , $3-CF_3C_6H_4$	3c , 74
5	1a , $C_{10}H_{21}$	2d , 3 -MeOC ₆ H ₄	3d, 77
6	$1a, C_{10}H_{21}$	2e , $2 - MeC_6H_4$	3e, Trace
7	1b, TBDMSO(CH ₂) ₂	2a , Ph	3f , 81
8	1c, $Ts(Bn)N(CH_2)_9$	2a , Ph	3g , 78
9	1d, $CH_2 = CH(CH_2)_8$	2a , Ph	3h , 67
10^d	1e, Ph	2a , Ph	3i , 84 ^e

^{*a*} The reaction was performed on a 0.3 mmol scale. ^{*b*} A small amount of product **3'** was also obtained. The ratio of **3/3'** was 9/1 unless otherwise noted. ^{*c*} The reaction was performed on a 3 mmol scale. ^{*d*} Performed at 66 °C for 1.5 h. ^{*e*} The ratio of **3i/3i'** was 97/3.

Table 2. Reaction of Allylzinc Intermediates with Various Electrophiles^a

^{*a*} Reaction conditions: **1** (0.5 mmol), **2** (0.5 mmol), electrophile (0.3 mmol). ^{*b*} The reaction was performed on a 3 mmol scale. ^{*c*} 9% of isomer **4d'** was contained. ^{*d*} 10% of isomer **4e'** was contained. ^{*e*} Reaction conditions: **1** (0.3 mmol), **2** (0.45 mmol), CH₃CN (0.9 mmol). ^{*f*} Reaction conditions: **1** (0.3 mmol), **2** (0.45 mmol), CH₃CN (1 mL, 18 mmol).

[†] Department of Material Chemistry, Graduate School of Engineering. ^{*} Department of Chemistry, Graduate School of Science.

The high yield and isomer ratio of $4\mathbf{f}$ suggest that the allylzinc **C**, not allylrhodium **B**, is responsible for the allylation reaction. An allylzinc reagent was prepared from 1-chloro-2-phenyl-2-tridecene, zinc powder, and lithium chloride.¹¹ Treatment of 2-methylbenzaldehyde with the allylzinc reagent afforded $4\mathbf{f}$ quantitatively in a diastereomeric ratio of 86:14. The ratio is very similar to that in Table 2. In contrast, the reaction with an allylrhodium reagent, derived from the allylzinc reagent and [RhCl(P'Bu₃)], gave a rather complex mixture which includes the major isomer of $4\mathbf{f}$ exclusively in 42% yield.

Allylzinc intermediates reacted with not only carbonyl compounds but also allyl bromide (Scheme 2). Treatment of allylzinc

Scheme 2. Regioselective Reaction with Allyl Bromide Controlled by the Addition of a Catalytic Amount of CuCN+2LiCl

Scheme 3. Synthesis of Stereodefined Skipped Polyene via Iterative Arylzincation Reaction

intermediates with allyl bromide afforded **5a** and **5b** in good yields. Interestingly, the sense of the regioselectivity was opposite when a copper catalyst was used (**6a** and **6b**).¹²

Finally, we applied the reaction to the synthesis of stereodefined skipped polyene¹³ via iterative arylzincation reactions (Scheme 3). Treatment of allene **1a** with phenylzinc reagent **2a** and subsequent reaction with propargyl bromide afforded the corresponding product **7** that has a terminal allene moiety in 76% yield. Iterative

arylzincation reactions gave stereodefined (5E,8E,11E)-11-phenyl-8-(4-fluorophenyl)-5-(3-methoxyphenyl)-1,2,5,8,11-docosapentaene (9). It is noteworthy that no isomerization of the olefinic moiety of 9 was observed despite the basic reaction conditions.

Acknowledgment. This work was supported by Grants-in-Aid for Scientific Research and GCOE Research from JSPS. K.M. acknowledges JSPS for financial support.

Supporting Information Available: Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Jeganmohan, M.; Cheng, C.-H. Chem. Commun. 2008, 3101. (b) Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem. 2003, 4101. (c) Ma, S. Chem. Rev. 2005, 105, 2829.
- (2) (a) Hopkins, C. D.; Malinakova, H. C. Org. Lett. 2004, 6, 2221. (b) Hopkins, C. D.; Guan, L.; Malinakova, H. C. J. Org. Chem. 2005, 70, 6848. (c) Hopkins, C. D.; Malinakova, H. C. Org. Lett. 2006, 8, 5971. (d) Bai, T.; Ma, S.; Jia, G. Tetrahedron 2007, 63, 6210. (e) Song, M.; Montgomery, J. Tetrahedron 2005, 61, 11440.
- (3) Catalytic three-component couplings involving allenes, aryl halides, and carbonyls in the presence of In metal: (a) Anwar, U.; Grigg, R.; Rasparini, M.; Savic, V.; Sridharan, V. *Chem. Commun.* 2000, 645. (b) Kang, S.-K.; Lee, S.-W.; Jung, J.; Lim, Y. J. Org. Chem. 2002, 67, 4376. (c) Cooper, I. R.; Grigg, R.; MacLachlan, W. S.; Sridharan, V. Chem. Commun. 2002, 1372.
- (4) Catalytic two-component allene-carbonyl reductive coupling via hydrogenation for diversity-oriented efficient synthesis of homoallyl alchohols: (a) Skucas, E.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12678. (b) Bower, J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134. (c) Skucas, E.; Zbieg, J. R.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 5054. (d) Han, S. B.; Kim, I. S.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 6916.
- (5) Recent examples of transition-metal-catalyzed carbozincation of alkynes: Ni (a) Stüdemann, T.; Ibrahim-Ouali, M.; Knochel, P. Tetrahedron 1998, 54, 1299. Rh (b) Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 2071. (c) Shintani, R.; Yamagami, T.; Hayashi, T. Org. Lett. 2005, 7, 2071. (c) Shintani, R.; Yamagami, T.; Hayashi, T. Org. Lett. 2006, 8, 4799. (d) Gourdet, B.; Rudkin, M. E.; Watts, C. A.; Lam, H. W. J. Org. Chem. 2009, 74, 7849. Cu (e) Maezaki, N.; Sawamoto, H.; Yoshigami, R.; Suzuki, T.; Tanaka, T. Org. Lett. 2003, 5, 1345. (f) Sklute, G.; Bolm, C.; Marek, I. Org. Lett. 2007, 9, 1259. (g) Tarwade, V.; Liu, X.; Yan, N.; Fox, J. M. J. Am. Chem. Soc. 2009, 131, 5382. Ti (h) Montchamp, J.-L.; Negishi, E. J. Am. Chem. Soc. 1998, 120, 5345. Fe (i) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2000, 122, 978. Co (j) Yasui, H.; Nishikawa, T.; Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2006, 79, 1271. (k) Murakami, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2009, 11, 2373. (l) Murakami, K.; Yorimitsu, H.; Oshima, K. Chem.-Eur. J. 2010,doi: 10.1002/chem.201001061.
- (6) Rhodium-catalyzed hydroarylation of allenes with arylboronic acids proceeds via direct protonation of the resulting allylrhodium without transmetalation between the allylrhodium and arylboronic acid: Nishimura, T.; Hirabayashi, S.; Yasuhara, Y.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 2556.
- (7) Copper-catalyzed conjugate addition of organozinc reagents to reactive allenic esters providing zinc dienolates: Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 7439.
- (8) Addition to allenes bearing a directing hydroxy group providing allylzincs: Richey, H. G., Jr.; Szucs, S. S. Tetrahedron Lett. 1971, 41, 3785.
- (9) Efficient three-component coupling of allenes, Grignard reagents, and chlorosilanes or alkyl halides was reported. However, precise mechanistic investigations of the reactions showed that generation of allylmagnesium intermediates might not be a major pathway: Fujii, Y.; Terao, J.; Kuniyasu, H.; Kambe, N. J. Organomet. Chem. 2007, 692, 375.
- (10) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 6040.
- (11) Metzger, A.; Schade, M. A.; Knochel, P. Org. Lett. 2008, 10, 1107.
- (12) The regioselectivity of the allylic substitution reaction with allylic copper reagents is known to heavily depend on substrates and reagents used. See:
 (a) Liepins, V.; Bäckvall, J.-E. *Eur. J. Org. Chem.* 2002, 3527. (b) Yanagisawa, A.; Nomura, N.; Yamamoto, H. *Tetrahedron* 1994, *50*, 6017. (c) Yamamoto, Y.; Maruyama, K. *J. Am. Chem. Soc.* 1978, *100*, 6282. (d) Karlström, A. S. E.; Bäckvall, J.-E. *Chem.-Eur. J.* 2001, *7*, 1981.
- (13) Macklin, T. K.; Micalizio, G. C. Nat. Chem. 2010, doi: 10.1038/NCHEM.665.

JA102303S